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Abstract 
The objective of this task is to determine the mechanisms which control the breakup, transport, mixing, 

and combustion of high pressure and supercritical droplets, jets, and sprays, both as these pertain to 
"steady" conditions as well as acoustically excited conditions. Previous results pertaining to "steady" con- 
ditions have now been augmented with the initiation of a study of the interaction of subcritical and super- 
critical jets with acoustic waves. Preliminary results suggest that supercritical jets do. not couple with 
acoustic waves as strongly as near-critical and subcritical jets. 

Introduction 
Combustion chamber pressures in many existing and in most planned future liquid rocket engines ex- 

ceed the critical pressure of the propellants, yet calculations in support of the design of such engines have 
in the past tended largely to assume conventional subcritical spray combustion processes. As the chamber 
pressure approaches and exceeds the critical pressure, however, many changes from conventional spray 
combustion can be expected. For example, the possibility of having distinct gas and liquid phases disap- 
pears at all temperatures when the pressure exceeds the critical pressure. Density varies smoothly, although 
possibly steeply, as a function of temperature with no discontinuous jumps. Surface tension and the en- 
thalpy of vaporization vanish. Thus the substance is most appropriately referred to as neither a gas nor a 
liquid, but simply as a "fluid." Near the critical pressure, large variations in the density, thermal conductiv- 
ity, and mass diffusivity can occur. For multi-component systems, the solubility of the lighter fluid in the 
heavier fluid increases as pressure approaches the critical pressure, the molecular diffusivity of the lighter 
fluid becomes more liquid-like, and mixture effects need to be taken into account in calculating the critical 
properties. Until recently, the mechanisms controlling injection and mixing under these conditions were not 
well understood, even to the extent that significant qualitative questions existed. However, considerable 
progress has been made over the past decade by research performed under this task [1-12] as well as by 
others [13-17]. 

Past results accomplished under this task include the successful production of transcritical cryogenic 
droplets [9], detailed shadowgraph measurements of the spreading rates of cryogenic jets over a range of 
subcritical to supercritical pressures [3,4,5,7], examination of the change in shear layer structure and the 
development of a semi-empirical model for predicting spreading rates over the full range of pressures [3,8], 
determination of the fractal dimension of the jets over the full range of pressures [1,8], and Raman scatter- 
ing measurements of the structure of the initial region of subcritical and supercritical jets [6]. An important 
finding of these past studies was the finding that, at a high enough pressure exceeding the critical pressure, 
supercritical jets behave in many respects like low Mach number, variable density gas jets. 

Here, attention is turned to the prospect of combustion instabilities and the potential for jets to interact 
with acoustic waves. Preliminary new results are presented which, apparently for the first time, reveal the 
effect of subcritical to supercritical pressures on the jet's ability to interact with externally driven transverse 
acoustic waves. Details not presented here may be found in refs. [2] and [12]. 

Experimental Approach 
The experimental apparatus of previous studies [1-9] was modified to expose cryogenic jets to trans- 

verse acoustic waves traveling perpendicular to the axis of the jets. Cold nitrogen jets initially below the 
critical temperature of nitrogen (T„ = 126.05 K) were injected into nitrogen at room temperature at various 
subcritical to supercritical pressures (Pcr - 3.42 MPa). The acoustic driver was a piezoelectric siren spe- 
cially designed for high pressure applications by Hersh Acoustical Engineering, Inc. In order to maximize 
the acoustic power to which the jets were exposed, the acoustic waves were channeled into a high aspect 



ratio rectangular channel into which the jets were injected vertically downward along the long axis of the 
cross section. The acoustic amplitudes reached between 161 to 171 dB at the dominant frequencies of 2700 
and 4800 Hz. These frequencies are similar to those often observed in high frequency chamber-mode 
rocket combustion instabilities. The calculated wavelengths at these frequencies (13.1 and 7.4 cm) were 
both much longer than the jet exit diameter of .254 mm. Probably because the wavelengths were much 
longer than the jet diameter for both frequecies, the results for both frequencies were qualitatively similar. 
Consequently, only results at 2700 Hz are shown below. A picture of the experimental apparatus is given in 
Fig. 1, where the orientation of the acoustic waves relative to the jet is illustrated in the inset to the figure. 

Results 
It  was  found  that  a certain Cryogenic 

minimum oscillation amplitude was cooler 
needed to bring about a detectable 
interaction with the jet. When a 
rapid transition is made from below 
to above this minimum value, a 
strong and transitory effect is ob- 
served, characterized by eruption of 
many drops and ligaments from the 
surface of the jet combined with 
amplification of the surface wave 
instabilities. When set at its highest 
achievable acoustic wave ampli- 
tude, the oscillation augmented the 
unstable surface waves and im- 
posed a zigzag-shaped contour to 
the jet. In all cases it was found that 
the acoustic field tended to cause 
the jet to deform in the mean into 
an elliptical cross section with the 
major axis perpendicular to the 
direction of propagation of the 
acoustic waves. This deformation is 
the result of the Bernoulli effect. A 
circular shape exposed to a cross 
flow experiences higher velocities 
and hence lower pressures around Figure 1. 
the shoulders of the shape com- 
pared with the forward and aft stagnation regions. The result is forces that tend to distort the shape into an 
ellipse having a major axis perpendicular to the direction of the flow. In an acoustic field, although the ve- 
locity field is oscillating, the mean effect is still to produce lower pressures around the shoulders, producing 
mean forces that tend to distort the cross section into an ellipse. 

Although the acoustic field always tended to distort the average cross section of the jet from a circle to 
an ellipse, the magnitude of the effect was found to depend on the case. Representative results showing the 
effect of the reduced pressure Pr = Pchamb I P„ are shown in Fig. 3. The top row of images in Fig. 3 corre- 
sponds to the acoustics being off, and the bottom row corresponds to the acoustics being on. The mass flow 
is the same in all cases, and the direction of wave propagation is perpendicular to the page. Quantitative 
measurements of such quantities as spreading angle, core length, and jet thicknesses with and without 
acoustics have been taken and are reported in refs. [2] and [12]. The overall trends observed are as follows. 
The effect of acoustic waves was largest near the critical pressure. The effect was smaller below the critical 
paper, where the jet is in a spray regime, but still reasonably large. Far enough above the critical pressure, 
however, when the jet is in a gas-like regime, there appears to be almost no effect of the acoustic waves. In 
all cases, the magnitude of the effect decreases as the velocity increases, which can be explained by fluid 
particles spending less time in the acoustic field as the velocity increases. 

Acoustic 
drivers 

Windowed 
pressure 
vessel 



In an effort to better understand why the acoustic field had little observable effect on the supercritical 
jets, a literature survey was conducted. Several references having some features similar to the present study 
were found [17-21], but none were found to be fully relevant to the present conditions. Advantage was 
taken of previous findings under this task that at a high enough pressure above the critical pressure the jets 
behave in many respects like gas jets. Assuming this to be true, it was possible to plot the present condi- 
tions on a map developed by Rockwell [20] for planar gas jets. The result is shown in Fig. 2. Curves for 
both the 2700 Hz and the 4800 Hz cases are shown, where the arrow indicates the direction of increasing 
mass flow. It can be seen that the operating regimes of the present study were not the same as Rockwell's, 
so due note must be taken about the dangers of extrapolation. However, it appears possible to observe that 
the present results fall in a region which is not in- 
consistent with an expectation of small acoustic ef- 
fects based on Rockwell's results. Further details 
concerning the above comparison are given in ref. 
[2]. 
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Relevance / Transitions 
Previous observations that supercritical jets be- 

have in many respects like gas jets at high enough 
pressures exceeding the critical pressure have one 
very important consequence: the likelihood that the 
vast body of existing literature regarding "conven- 
tional" gas jets can be used with some degree of 
confidence. Good indication now exists concerning 
when this will be the case and when it will not be. 
This is a significant improvement over the state of 
affairs that existed when this task was begun, when 
supercritical processes seemed fundamentally mys- 
terious and there was no confidence about what to 
expect. Engine designers can now perform calcula- 
tions with a greater degree of confidence. 

The present acoustic results are preliminary and thus there has not been sufficient time for transition. 
However, they suggest one intriguing possibility. It seems possible that supercritical jets may have fewer 
ways to couple with acoustic waves than subcritical jets. Thus it seems possible that supercritical pressures 
might have enhanced combustion stability characteristics. Future planned research on acoustic effects will 
hopefully shed more light on this conjecture. 

UPPER ZONE 

PRESERVATIOI 

Figure 2 

Summary and Conclusions 
The effect of subcritical to supercritical pressures on the ability of a cryogenic nitrogen jet to couple 

with transverse acoustic waves has been studied, apparently for the first time, and preliminary results have 
been obtained. In all cases, the acoustic field tended to cause the jet to deform into an elliptical mean cross 
section, with major axis perpendicular to the direction of propagation, due to the Bernoulli effect. The 
magnitude of the deformation was greatest near the critical pressure, was smaller but still large at subcriti- 
cal pressures, and was nearly unobservable at supercritical pressures. The latter result at supercritical pres- 
sures was consistent with the results of Rockwell [20]. The magnitude of the deformation also decreased in 
all cases as flow velocity increased, due to fluid particles having less time in the acoustic field. The results 
might imply that supercritical pressures have enhanced combustion stability characteristics. 
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